JunkBox_Lib++ (for Windows) 1.10.1
Loading...
Searching...
No Matches
Vector.h
Go to the documentation of this file.
1#ifndef __JBXL_CPP_VECTOR_H_
2#define __JBXL_CPP_VECTOR_H_
3
11/*
12template <typename T=double> class DllExport Vector // 3次元ベクトルの定義
13template <typename T=double> class DllExport Vector4 // 4次元ベクトルの定義
14template <typename T=double> class DllExport UVMap // 2次元ベクトルの定義, パラメトリック曲面用
15template <typename T=int> class DllExport PCoordinate // 多角形の座標の値を格納するクラス
16
17template <typename T=int> class DllExport RBound // 境界構造体
18template <typename T> inline bool disJunctBounds(RBound<T> b1, RBound<T> b2);
19
20template <typename T> inline double VectorAngle(Vector<T> a, Vector<T> b)
21template <typename T> inline Vector<T> NewellMethod(Vector<T> v1, Vector<T> v2, Vector<T> v3)
22template <typename T> inline Vector<T> BSplineInterp4(Vector<T> p0, Vector<T> p1, double t)
23*/
24
25
26#include "tools++.h"
27#include <math.h>
28#include "Tolerance.h"
29
30
31//
32namespace jbxl {
33
34
35#define VECTOR Vector
36#define VECTOR4 Vector4
37#define VECTOR2 UVMap
38#define Vector2 UVMap
39#define UVMAP UVMap
40
41
42#define BOUNDARY_BLANK 5
43
44
46// Vector
47//
48
55template <typename T=double> class DllExport Vector
56{
57public:
58 T x;
59 T y;
60 T z;
61
62 double n;
63 double c;
64 int d;
65
66public:
67 Vector(T X=0, T Y=0, T Z=0, double N=0.0, double C=1.0, int D=0) { set(X, Y, Z, N, C, D);}
68 virtual ~Vector(void) {}
69
70 T norm2(void) { return (x*x + y*y + z*z);}
71 double norm(void) { n = (double)sqrt(x*x + y*y + z*z); return n;}
73
74 void init(double C=1.0) { x = y = z = (T)0; n = 0.0; c = C; d = 0;}
75 void set(T X, T Y=0, T Z=0, double N=0.0, double C=1.0, int D=0);
76
77 // 別名
78 T& element1(void) { return x;}
79 T& element2(void) { return y;}
80 T& element3(void) { return z;}
81 T& element(int i) { if(i==1) return x; else if(i==2) return y; else if(i==3) return z; else return x;}
82
83 template <typename R> Vector<T>& operator = (const Vector<R> a) { x=(T)a.x; y=(T)a.y; z=(T)a.z; n=a.n; c=a.c; d=a.d; return *this;}
84};
85
86
87template <typename T> Vector<T> Vector<T>::normalize(void)
88{
89 double nrm = (double)sqrt(x*x + y*y + z*z);
90
91 if (nrm>=Zero_Eps) {
92 x = (T)(x/nrm);
93 y = (T)(y/nrm);
94 z = (T)(z/nrm);
95 n = 1.0;
96 }
97 else {
98 init();
99 }
100
101 return *this;
102}
103
104
110template <typename T> inline void Vector<T>::set(T X, T Y, T Z, double N, double C, int D)
111{
112 x = X;
113 y = Y;
114 z = Z;
115 n = N;
116 c = C;
117 d = D;
118
119 if (n<=0.0) {
120 n = (double)sqrt(x*x + y*y + z*z);
121 }
122}
123
124
125// Cast
126template <typename T, typename R> inline Vector<T> Cast(Vector<R> v) { return Vector<T>((T)v.x, (T)v.y, (T)v.z, v.n, v.c, v.d);}
127
128
130// Vector オペレータ
131
132template <typename T> inline Vector<T> operator - (const Vector<T> a)
133{ return Vector<T>(-a.x, -a.y, -a.z, a.n, a.c, a.d); }
134
135
136template <typename T> inline Vector<T> operator + (const Vector<T> a, const Vector<T> b)
137{ return Vector<T>(a.x + b.x, a.y + b.y, a.z + b.z, 0.0, Min(a.c, b.c), a.d); }
138
139
140template <typename T, typename R> inline Vector<T> operator + (const Vector<T> a, R c)
141{ return Vector<T>(a.x + (T)c, a.y + (T)c, a.z + (T)c, 0.0, a.c, a.d); }
142
143
144template <typename T, typename R> inline Vector<T> operator + (const R c, Vector<T> a)
145{ return Vector<T>((T)c + a.x, (T)c + a.y, (T)c + a.z, 0.0, a.c, a.d); }
146
147
148template <typename T> inline Vector<T> operator - (const Vector<T> a, const Vector<T> b)
149{ return Vector<T>(a.x - b.x, a.y - b.y, a.z - b.z, 0.0, Min(a.c, b.c), a.d); }
150
151
152template <typename T, typename R> inline Vector<T> operator - (const Vector<T> a, R c)
153{ return Vector<T>(a.x - (T)c, a.y - (T)c, a.z - (T)c, 0.0, a.c, a.d); }
154
155
156template <typename T, typename R> inline Vector<T> operator - (R c, const Vector<T> a)
157{ return Vector<T>((T)c - a.x, (T)c - a.y, (T)c - a.z, 0.0, a.c, a.d); }
158
159
160template <typename T, typename R> inline Vector<T> operator * (const R d, const Vector<T> a)
161{ return Vector<T>((T)d*a.x, (T)d*a.y, (T)d*a.z, (T)d*a.n, a.c, a.d); }
162
163
164template <typename T, typename R> inline Vector<T> operator * (const Vector<T> a, const R d)
165{ return Vector<T>(a.x*(T)d, a.y*(T)d, a.z*(T)d, a.n*(T)d, a.c, a.d); }
166
167
168template <typename T, typename R> inline Vector<T> operator / (const Vector<T> a, const R d)
169{ return Vector<T>(a.x/(T)d, a.y/(T)d, a.z/(T)d, a.n/(T)d, a.c, a.d); }
170
171
172template <typename T, typename R> inline Vector<T> operator / (const R d, const Vector<T> a)
173{ return Vector<T>((T)d/a.x, (T)d/a.y, (T)d/a.z, 0.0, a.c, a.d); }
174// v.norm();
175// return v;
176//}
177
178
179template <typename T> inline Vector<T> operator += (Vector<T>& a, const Vector<T> b)
180{ a = a + b; return a; }
181
182
183template <typename T, typename R> inline Vector<T> operator += (Vector<T>& a, const Vector<R> b)
184{ a = a + Cast<T>(b); return a; }
185
186
187template <typename T> inline Vector<T> operator -= (Vector<T>& a, const Vector<T> b)
188{ a = a - b; return a; }
189
190
191template <typename T, typename R> inline Vector<T> operator -= (Vector<T>& a, const Vector<R> b)
192{ a = a - Cast<T>(b); return a; }
193
194
196template <typename T> inline Vector<T> operator ^ (const Vector<T> a, const Vector<T> b)
197{ return Vector<T>(a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z, a.x*b.y-a.y*b.x, 0.0, Min(a.c, b.c)); }
198
199
201template <typename T> inline T operator * (const Vector<T> a, const Vector<T> b)
202{ return (a.x*b.x + a.y*b.y + a.z*b.z); }
203
204
205template <typename T> inline bool operator == (const Vector<T> v1, const Vector<T> v2)
206{ return (v1.x == v2.x && v1.y == v2.y && v1.z == v2.z); }
207
208
209template <typename T> inline bool operator != (const Vector<T> v1, const Vector<T> v2)
210{ return (v1.x != v2.x || v1.y != v2.y || v1.z != v2.z); }
211
212
213template <typename T> inline Vector<T> MidPoint(const Vector<T> a, const Vector<T> b)
214{ return 0.5*(a+b); }
215
216
217//
219template <typename T> inline double VectorDist(const Vector<T> a, const Vector<T> b)
220{
221 return (b-a).norm();
222}
223
224
225template <typename T> inline bool operator < (const Vector<T> v1, const Vector<T> v2)
226{
227 if (v1.x != v2.x) return v1.x < v2.x;
228 if (v1.y != v2.y) return v1.y < v2.y;
229 if (v1.z != v2.z) return v1.z < v2.z;
230 return false;
231}
232
233
234
236
241template <typename T> inline bool same_vector(Vector<T> v1, Vector<T> v2)
242{
243 T dx = v1.x - v2.x;
244 T dy = v1.y - v2.y;
245 T dz = v1.z - v2.z;
246 T d2 = dx*dx + dy*dy + dz*dz;
248
249 if ((double)d2>t2) return false;
250 return true;
251}
252
253
254template <typename T> inline Vector<T>* dupVector(Vector<T>* a, int n)
255{
256 Vector<T>* v = (Vector<T>*)malloc(sizeof(Vector<T>)*n);
257 if (v==NULL) return NULL;
258
259 for (int i=0; i<n; i++) v[i] = a[i];
260
261 return v;
262}
263
264
265// angle between a and b
266template <typename T> inline double VectorAngle(Vector<T> a, Vector<T> b)
267{
268 a.normalize();
269 b.normalize();
270 if (a.n<Zero_Eps || b.n<Zero_Eps) return 0.0;
271
272 double cs = a*b;
273 if (cs>=1.0) return 0.0;
274 else if (cs<=-1.0) return PI;
275
276 return acos(a*b);
277}
278
279
280template <typename T> inline double VectorAngle(Vector<T> a, Vector<T> b, Vector<T> c)
281{
282 return VectorAngle(b-a, c-b);
283}
284
285
286//
288template <typename T> inline Vector<T> NewellMethod(Vector<T> v1, Vector<T> v2, Vector<T> v3)
289{
290 Vector<T> vect;
291
292 vect.x = (v1.y-v2.y)*(v1.z+v2.z) + (v2.y-v3.y)*(v2.z+v3.z) + (v3.y-v1.y)*(v3.z+v1.z);
293 vect.y = (v1.z-v2.z)*(v1.x+v2.x) + (v2.z-v3.z)*(v2.x+v3.x) + (v3.z-v1.z)*(v3.x+v1.x);
294 vect.z = (v1.x-v2.x)*(v1.y+v2.y) + (v2.x-v3.x)*(v2.y+v3.y) + (v3.x-v1.x)*(v3.y+v1.y);
295 vect.n = 0.0;
296 vect.c = Min(v1.c, v2.c);
297 vect.c = Min(v3.c, vect.c);
298
299 return vect;
300}
301
302
303template <typename T> inline Vector<T> NewellMethod3(Vector<T> v1, Vector<T> v2, Vector<T> v3)
304{
305 return NewellMethod(v1, v2, v3);
306}
307
308
309template <typename T> inline Vector<T> NewellMethod4(Vector<T> v1, Vector<T> v2, Vector<T> v3, Vector<T> v4)
310{
311 Vector<T> vect;
312
313 vect.x = (v1.y-v2.y)*(v1.z+v2.z) + (v2.y-v3.y)*(v2.z+v3.z) + (v3.y-v4.y)*(v3.z+v4.z) + (v4.y-v1.y)*(v4.z+v1.z);
314 vect.y = (v1.z-v2.z)*(v1.x+v2.x) + (v2.z-v3.z)*(v2.x+v3.x) + (v3.z-v4.z)*(v3.x+v4.x) + (v4.z-v1.z)*(v4.x+v1.x);
315 vect.z = (v1.x-v2.x)*(v1.y+v2.y) + (v2.x-v3.x)*(v2.y+v3.y) + (v3.x-v4.x)*(v3.y+v4.y) + (v4.x-v1.x)*(v4.y+v1.y);
316 vect.n = 0.0;
317 vect.c = Min(v1.c, v2.c);
318 vect.c = Min(v3.c, vect.c);
319 vect.c = Min(v4.c, vect.c);
320 return vect;
321}
322
323
334template <typename T> inline Vector<T> BSplineInterp4(Vector<T> p0, Vector<T> p1, double t)
335{
336 Vector<T> q0 = 2*p0 - p1;
337// Vector<T> q1 = p0;
338// Vector<T> q2 = p1;
339 Vector<T> q3 = 2*p1 - p0;
340
341 double t2 = t*t;
342 double t3 = t2*t;
343
344 double c0 = (t2 - t)*0.5 + (1.0 - t3)*0.16666666666666667; // 1/6*(1-t)^3
345 double c1 = t3*0.5 - t2 + 0.66666666666666667; // 1/2*t3 - t2 + 2/3
346 double c2 = (t + t2 - t3)*0.5 + 0.16666666666666667; // -1/2*t3 + 1/2*t2 + 1/2*t + 1/6
347 double c3 = t3*0.16666666666666667; // 1/6*t3
348
349 Vector<T> vect = c0*q0 + c1*p0 + c2*p1 + c3*q3;
350
351 return vect;
352}
353
354
355
357// 3D多角形座標
358//
359
366template <typename T=int> class DllExport PCoordinate
367{
368public:
369 int dim; // 角数
370 Vector<T>** point; // データ
371
372public:
373 PCoordinate(void) { dim = 0; point = NULL;}
374 PCoordinate(int n) { init(n);}
375
376 virtual ~PCoordinate(void) {}
377 //
378 void init(int n) {
379 dim = 0;
380 point = NULL;
381
382 if (n>0) {
383 point = (Vector<T>**)malloc(sizeof(Vector<T>*)*n);
384 if (point!=NULL) {
385 dim = n;
386 for (int i=0; i<dim; i++) point[i] = new Vector<T>();
387 }
388 }
389 }
390
391 void set(int m, T x, T y=0, T z=0, double n=0.0) {
392 if (m>=0 && m<dim && point!=NULL) point[m]->set(x, y, z, n);
393 }
394
395 void clear(void) {
396 if (point!=NULL) {
397 for (int i=0; i<dim; i++) point[i]->set((T)0);
398 }
399 }
400
401 void free(void) {
402 if (point!=NULL) {
403 for (int i=0; i<dim; i++) delete(point[i]);
404 ::free(point);
405 point = NULL;
406 }
407 dim = 0;
408 }
409
410};
411
412
413
415// 境界構造体
416//
417
423template <typename T=int> class DllExport RBound
424{
425public:
434
435public:
436
437 RBound(T XMin=(T)0, T XMax=(T)0, T YMin=(T)0, T YMax=(T)0, T ZMin=(T)0, T ZMax=(T)0, T TMin=(T)0, T TMax=(T)0) {
438 set(XMin, XMax, YMin, YMax, ZMin, ZMax, TMin, TMax);
439 }
440
441 virtual ~RBound() {}
442
443 //
444 void set(T XMin=(T)0, T XMax=(T)0, T YMin=(T)0, T YMax=(T)0, T ZMin=(T)0, T ZMax=(T)0, T TMin=(T)0, T TMax=(T)0){
445 xmin = XMin;
446 ymin = YMin;
447 zmin = ZMin;
448 xmax = XMax;
449 ymax = YMax;
450 zmax = ZMax;
451 tmin = TMin;
452 tmax = TMax;
453 }
454
455 void init() { xmin = xmax = ymin = ymax = zmin = zmax = tmin = tmax = (T)0;}
456
458 // 拡大
459
461 void enlarge(T f) {
462 xmin -= f;
463 ymin -= f;
464 zmin -= f;
465 xmax += f;
466 ymax += f;
467 zmax += f;
468 }
469
470 void multiple(T f) {
471 xmin *= f;
472 ymin *= f;
473 zmin *= f;
474 xmax *= f;
475 ymax *= f;
476 zmax *= f;
477 }
478
480 // 融合
481
483 void fusion(RBound<T> bound) {
484 xmin = Min(xmin, bound.xmin);
485 ymin = Min(ymin, bound.ymin);
486 zmin = Min(zmin, bound.zmin);
487 xmax = Max(xmax, bound.xmax);
488 ymax = Max(ymax, bound.ymax);
489 zmax = Max(zmax, bound.zmax);
490 }
491
493 void fusion(Vector<T> vect){
494 xmin = Min(xmin, vect.x);
495 ymin = Min(ymin, vect.y);
496 zmin = Min(zmin, vect.z);
497 xmax = Max(xmax, vect.x);
498 ymax = Max(ymax, vect.y);
499 zmax = Max(zmax, vect.z);
500 }
501
503 void fusion(T x, T y, T z){
504 xmin = Min(xmin, x);
505 ymin = Min(ymin, y);
506 zmin = Min(zmin, z);
507 xmax = Max(xmax, x);
508 ymax = Max(ymax, y);
509 zmax = Max(zmax, z);
510 }
511
513 // 共通領域
514
516 void commonarea(RBound<T> bound) {
517 xmin = Max(xmin, bound.xmin);
518 ymin = Max(ymin, bound.ymin);
519 zmin = Max(zmin, bound.zmin);
520 xmax = Min(xmax, bound.xmax);
521 ymax = Min(ymax, bound.ymax);
522 zmax = Min(zmax, bound.zmax);
523 }
524
527 void cutdown(RBound<T> bound) {
528 xmin += bound.xmin;
529 ymin += bound.ymin;
530 zmin += bound.zmin;
531 xmax += bound.xmin;
532 ymax += bound.ymin;
533 zmax += bound.zmin;
534 }
535
536 //
537 void cutdown(Vector<T> vect){
538 xmin += vect.x;
539 ymin += vect.y;
540 zmin += vect.z;
541 xmax += vect.x;
542 ymax += vect.y;
543 zmax += vect.z;
544 }
545
546 //
547 void cutdown(T x, T y, T z){
548 xmin += x;
549 ymin += y;
550 zmin += z;
551 xmax += x;
552 ymax += y;
553 zmax += z;
554 }
555
558 return vect.x < xmin || vect.x > xmax ||
559 vect.y < ymin || vect.y > ymax ||
560 vect.z < zmin || vect.z > zmax;
561 }
562
564 bool outofBounds(T x, T y, T z) {
565 return x < xmin || x > xmax ||
566 y < ymin || y > ymax ||
567 z < zmin || z > zmax;
568 }
569};
570
571
580template <typename T> inline bool disJunctBounds(RBound<T> b1, RBound<T> b2)
581{
582 return (b1.xmin >= b2.xmax) || (b2.xmin >= b1.xmax) ||
583 (b1.ymin >= b2.ymax) || (b2.ymin >= b1.ymax) ||
584 (b1.zmin >= b2.zmax) || (b2.zmin >= b1.zmax);
585}
586
587
588
590// UVMap
591//
592
599template <typename T=double> class DllExport UVMap
600{
601public:
602 T u;
603 T v;
604 int d;
605
606public:
607 UVMap(T U=0, T V=0, int d=0) { set(U, V, d);}
608 virtual ~UVMap(void) {}
609
610 void init(void) { u = v = (T)0; d = 0;}
611 void set(T U, T V=0, int D=0) { u = U, v = V; d = D;}
612
613 UVMap flip(void) { u = (T)(1.0 - u); v = (T)(1.0 - v); return *this;}
614 UVMap flipV(void) { v = (T)(1.0 - v); return *this;}
615 UVMap flipU(void) { u = (T)(1.0 - u); return *this;}
616
617 template <typename R> UVMap<T>& operator = (const UVMap<R> a) { u = (T)a.u; v = (T)a.v; d = a.d; return *this;}
618};
619
620
621// Cast
622template <typename T, typename R> inline UVMap<T> Cast(UVMap<R> v) { return UVMap<T>((T)v.u, (T)v.v, v.d); }
623
624
626// UVMap オペレータ
627
628template <typename T> inline UVMap<T> operator - (const UVMap<T> a)
629{ return UVMap<T>(-a.u, -a.v, a.d); }
630
631
632template <typename T> inline UVMap<T> operator + (const UVMap<T> a, const UVMap<T> b)
633{ return UVMap<T>(a.u + b.u, a.v + b.v, a.d); }
634
635
636template <typename T, typename R> inline UVMap<T> operator + (const UVMap<T> a, R c)
637{ return UVMap<T>(a.u + (T)c, a.v + (T)c, a.d); }
638
639
640template <typename T, typename R> inline UVMap<T> operator + (const R c, UVMap<T> a)
641{ return UVMap<T>((T)c + a.u, (T)c + a.v, a.d); }
642
643
644template <typename T> inline UVMap<T> operator - (const UVMap<T> a, const UVMap<T> b)
645{ return UVMap<T>(a.u - b.u, a.v - b.v, a.d); }
646
647
648template <typename T, typename R> inline UVMap<T> operator - (const UVMap<T> a, R c)
649{ return UVMap<T>(a.u - (T)c, a.v - (T)c, a.d); }
650
651
652template <typename T, typename R> inline UVMap<T> operator - (const R c, UVMap<T>a)
653{ return UVMap<T>((T)c - a.u, (T)c - a.v, a.d); }
654
655
656template <typename T, typename R> inline UVMap<T> operator * (const R d, const UVMap<T> a)
657{ return UVMap<T>((T)d*a.u, (T)d*a.v, a.d); }
658
659
660template <typename T, typename R> inline UVMap<T> operator * (const UVMap<T> a, const R d)
661{ return UVMap<T>(a.u*(T)d, a.v*(T)d, a.d); }
662
663
664template <typename T, typename R> inline UVMap<T> operator / (const UVMap<T> a, const R d)
665{ return UVMap<T>(a.u/(T)d, a.v/(T)d, a.d); }
666
667
668template <typename T, typename R> inline UVMap<T> operator / (const R d, const UVMap<T> a)
669{ return UVMap<T>((T)d/a.u, (T)d/a.v, a.d); }
670
671
672template <typename T> inline bool operator == (const UVMap<T> a, const UVMap<T> b)
673{ return (a.u == b.u && a.v == b.v); }
674
675
676template <typename T> inline bool operator != (const UVMap<T> a, const UVMap<T> b)
677{ return (a.u != b.u || a.v != b.v); }
678
679
680template <typename T> inline UVMap<T> operator += (UVMap<T>& a, const UVMap<T> b)
681{ a = a + b; return a; }
682
683
684template <typename T, typename R> inline UVMap<T> operator += (UVMap<T>& a, const UVMap<R> b)
685{ a = a + Cast<T>(b); return a; }
686
687
688template <typename T> inline UVMap<T> operator -= (UVMap<T>& a, const UVMap<T> b)
689{ a = a - b; return a; }
690
691template <typename T, typename R> inline UVMap<T> operator -= (UVMap<T>& a, const UVMap<R> b)
692{ a = a - Cast<T>(b); return a; }
693
694
695
697// Vector4
698//
699
706template <typename T=double> class DllExport Vector4
707{
708public:
709 T x;
710 T y;
711 T z;
712 T t;
713
714 double n;
715 double c;
716 int d;
717
718public:
719 Vector4(T X=0, T Y=0, T Z=0, T U=0, double N=0.0, double C=1.0, int D=0) { set(X, Y, Z, U, N, C, D);}
720 virtual ~Vector4(void) {}
721
722 T norm2(void) { return (x*x + y*y + z*z + t*t);}
723 double norm(void) { n = (double)sqrt(x*x + y*y + z*z + t*t); return n;}
725
726 void init(double C=1.0) { x = y = z = t = (T)0; n = 0.0; c = C; d = 0;}
727 void set(T X, T Y=0, T Z=0, T U=0, double N=0.0, double C=1.0, int D=0);
728
729 // 別名
730 T& element1(void) { return x;}
731 T& element2(void) { return y;}
732 T& element3(void) { return z;}
733 T& element4(void) { return t;}
734 T& element(int i) { if(i==1) return x; else if(i==2) return y; else if(i==3) return z; else if(i==4) return t; else return x;}
735
736 template <typename R> Vector4<T>& operator = (const Vector4<R> a) { x=(T)a.x; y=(T)a.y; z=(T)a.z; t=(T)a.t; n=a.n; c=a.c; d=a.d; return *this;}
737};
738
739
740template <typename T> Vector4<T> Vector4<T>::normalize(void)
741{
742 double nrm = (double)sqrt(x*x + y*y + z*z + t*t);
743
744 if (nrm>=Zero_Eps) {
745 x = (T)(x/nrm);
746 y = (T)(y/nrm);
747 z = (T)(z/nrm);
748 t = (T)(t/nrm);
749 n = 1.0;
750 }
751 else {
752 init();
753 }
754
755 return *this;
756}
757
758
764template <typename T> inline void Vector4<T>::set(T X, T Y, T Z, T U, double N, double C, int D)
765{
766 x = X;
767 y = Y;
768 z = Z;
769 t = U;
770 n = N;
771 c = C;
772 d = D;
773
774 if (n<=0.0) {
775 n = (double)sqrt(x*x + y*y + z*z + t*t);
776 }
777}
778
779
780// Cast
781template <typename T, typename R> inline Vector4<T> Cast(Vector4<R> v) { return Vector4<T>((T)v.x, (T)v.y, (T)v.z, (T)v.t, v.n, v.c, v.d);}
782
783
785// Vector4 オペレータ
786
787template <typename T> inline Vector4<T> operator - (const Vector4<T> a)
788{ return Vector4<T>(-a.x, -a.y, -a.z, -a.t, a.n, a.c, a.d); }
789
790
791template <typename T> inline Vector4<T> operator + (const Vector4<T> a, const Vector4<T> b)
792{ return Vector4<T>(a.x + b.x, a.y + b.y, a.z + b.z, a.t + b.t, 0.0, Min(a.c, b.c), a.d); }
793
794
795template <typename T, typename R> inline Vector4<T> operator + (const Vector4<T> a, R c)
796{ return Vector4<T>(a.x + (T)c, a.y + (T)c, a.z + (T)c, a.t + (T)c, 0.0, a.c, a.d); }
797
798
799template <typename T, typename R> inline Vector4<T> operator + (const R c, Vector4<T> a)
800{ return Vector4<T>((T)c + a.x, (T)c + a.y, (T)c + a.z, (T)c + a.t, 0.0, a.c, a.d); }
801
802
803template <typename T> inline Vector4<T> operator - (const Vector4<T> a, const Vector4<T> b)
804{ return Vector4<T>(a.x - b.x, a.y - b.y, a.z - b.z, a.t - b.t, 0.0, Min(a.c, b.c), a.d); }
805
806
807template <typename T, typename R> inline Vector4<T> operator - (const Vector4<T> a, R c)
808{ return Vector4<T>(a.x - (T)c, a.y - (T)c, a.z - (T)c, a.t - (T)c, 0.0, a.c, a.d); }
809
810
811template <typename T, typename R> inline Vector4<T> operator - (R c, const Vector4<T> a)
812{ return Vector4<T>((T)c - a.x, (T)c - a.y, (T)c - a.z, (T)c - a.t, 0.0, a.c, a.d); }
813
814
815template <typename T, typename R> inline Vector4<T> operator * (const R d, const Vector4<T> a)
816{ return Vector4<T>((T)d*a.x, (T)d*a.y, (T)d*a.z, (T)d*a.t, (T)d*a.n, a.c, a.d); }
817
818
819template <typename T, typename R> inline Vector4<T> operator * (const Vector4<T> a, const R d)
820{ return Vector4<T>(a.x*(T)d, a.y*(T)d, a.z*(T)d, a.t*(T)d, a.n*(T)d, a.c, a.d); }
821
822
823template <typename T, typename R> inline Vector4<T> operator / (const Vector4<T> a, const R d)
824{ return Vector4<T>(a.x/(T)d, a.y/(T)d, a.z/(T)d, a.t/(T)d, a.n/(T)d, a.c, a.d); }
825
826
827template <typename T, typename R> inline Vector4<T> operator / (const R d, const Vector4<T> a)
828{ return Vector4<T>((T)d/a.x, (T)d/a.y, (T)d/a.z, (T)d/a.t, 0.0, a.c, a.d) ;}
829
830
831template <typename T> inline Vector4<T> operator += (Vector4<T>& a, const Vector4<T> b)
832{ a = a + b; return a; }
833
834
835template <typename T, typename R> inline Vector4<T> operator += (Vector4<T>& a, const Vector4<R> b)
836{ a = a + Cast<T>(b); return a; }
837
838
839template <typename T> inline Vector4<T> operator -= (Vector4<T>& a, const Vector4<T> b)
840{ a = a - b; return a; }
841
842template <typename T, typename R> inline Vector4<T> operator -= (Vector4<T>& a, const Vector4<R> b)
843{ a = a - Cast<T>(b); return a; }
844
845
847template <typename T> inline T operator * (const Vector4<T> a, const Vector4<T> b)
848{ return (a.x*b.x + a.y*b.y + a.z*b.z + a.t*b.t); }
849
850
851template <typename T> inline bool operator == (const Vector4<T> v1, const Vector4<T> v2)
852{ return (v1.x == v2.x && v1.y == v2.y && v1.z == v2.z && v1.t == v2.t); }
853
854
855template <typename T> inline bool operator != (const Vector4<T> v1, const Vector4<T> v2)
856{ return (v1.x != v2.x || v1.y != v2.y || v1.z != v2.z || v1.t != v2.t); }
857
858
859template <typename T> inline Vector4<T> MidPoint(const Vector4<T> a, const Vector4<T> b)
860{ return 0.5*(a+b); }
861
862
863//
865template <typename T> inline double Vector4Dist(const Vector4<T> a, const Vector4<T> b)
866{
867 //return (b-a).n;
868 return (b-a).norm();
869}
870
871
872template <typename T> inline bool operator < (const Vector4<T> v1, const Vector4<T> v2)
873{
874 if (v1.x != v2.x) return v1.x < v2.x;
875 if (v1.y != v2.y) return v1.y < v2.y;
876 if (v1.z != v2.z) return v1.z < v2.z;
877 if (v1.t != v2.t) return v1.t < v2.t;
878 return false;
879}
880
881
883
888template <typename T> inline bool same_vector(Vector4<T> v1, Vector4<T> v2)
889{
890 T dx = v1.x - v2.x;
891 T dy = v1.y - v2.y;
892 T dz = v1.z - v2.z;
893 T dt = v1.t - v2.t;
894 T d2 = dx*dx + dy*dy + dz*dz + dt*dt;
896
897 if ((double)d2>t2) return false;
898 return true;
899}
900
901
902template <typename T> inline Vector4<T>* dupVector4(Vector4<T>* a, int n)
903{
904 Vector4<T>* v = (Vector4<T>*)malloc(sizeof(Vector4<T>)*n);
905 if (v==NULL) return NULL;
906
907 for (int i=0; i<n; i++) v[i] = a[i];
908
909 return v;
910}
911
912
913// angle between a and b
914template <typename T> inline double Vector4Angle(Vector4<T> a, Vector4<T> b)
915{
916 a.normalize();
917 b.normalize();
918 if (a.n<Zero_Eps || b.n<Zero_Eps) return 0.0;
919
920 double cs = a*b;
921 if (cs>=1.0) return 0.0;
922 else if (cs<=-1.0) return PI;
923
924 return acos(a*b);
925}
926
927
928template <typename T> inline double Vector4Angle(Vector4<T> a, Vector4<T> b, Vector4<T> c)
929{
930 return Vector4Angle(b-a, c-b);
931}
932
933
934
935} // namespace
936
937#endif
938
各種トレランス ヘッダ
PCoordinate(void)
Definition Vector.h:373
PCoordinate(int n)
Definition Vector.h:374
void init(int n)
Definition Vector.h:378
void set(int m, T x, T y=0, T z=0, double n=0.0)
Definition Vector.h:391
void free(void)
Definition Vector.h:401
void clear(void)
Definition Vector.h:395
virtual ~PCoordinate(void)
Definition Vector.h:376
Vector< T > ** point
Definition Vector.h:370
void init()
Definition Vector.h:455
RBound(T XMin=(T) 0, T XMax=(T) 0, T YMin=(T) 0, T YMax=(T) 0, T ZMin=(T) 0, T ZMax=(T) 0, T TMin=(T) 0, T TMax=(T) 0)
Definition Vector.h:437
T xmax
x軸境界の最大値.
Definition Vector.h:427
T ymin
y軸境界の最小値.
Definition Vector.h:428
void set(T XMin=(T) 0, T XMax=(T) 0, T YMin=(T) 0, T YMax=(T) 0, T ZMin=(T) 0, T ZMax=(T) 0, T TMin=(T) 0, T TMax=(T) 0)
Definition Vector.h:444
T tmax
汎用.
Definition Vector.h:433
bool outofBounds(Vector< T > vect)
ベクトルが位置ベクトルの場合,その点は境界外か? 境界外:true,境界内:false
Definition Vector.h:557
T tmin
汎用.
Definition Vector.h:432
void fusion(T x, T y, T z)
ポイントと融合させる
Definition Vector.h:503
void fusion(Vector< T > vect)
ベクトル vect と融合させる
Definition Vector.h:493
void cutdown(T x, T y, T z)
Definition Vector.h:547
T zmax
z軸境界の最大値.
Definition Vector.h:431
T xmin
x軸境界の最小値.
Definition Vector.h:426
bool outofBounds(T x, T y, T z)
その点は境界外か? 境界外:true,境界内:false
Definition Vector.h:564
void enlarge(T f)
境界構造体 bound を広げる
Definition Vector.h:461
void multiple(T f)
Definition Vector.h:470
virtual ~RBound()
Definition Vector.h:441
void fusion(RBound< T > bound)
境界構造体 bound と融合させる
Definition Vector.h:483
T ymax
y軸境界の最大値.
Definition Vector.h:429
void cutdown(RBound< T > bound)
切り出した場合の境界
Definition Vector.h:527
T zmin
z軸境界の最小値.
Definition Vector.h:430
void cutdown(Vector< T > vect)
Definition Vector.h:537
void commonarea(RBound< T > bound)
境界構造体 bound との共通領域 共通領域がない場合は,min>max になる
Definition Vector.h:516
void init(void)
Definition Vector.h:610
UVMap flip(void)
Definition Vector.h:613
UVMap flipV(void)
Definition Vector.h:614
virtual ~UVMap(void)
Definition Vector.h:608
int d
汎用
Definition Vector.h:604
void set(T U, T V=0, int D=0)
Definition Vector.h:611
UVMap flipU(void)
Definition Vector.h:615
UVMap(T U=0, T V=0, int d=0)
Definition Vector.h:607
Vector4(T X=0, T Y=0, T Z=0, T U=0, double N=0.0, double C=1.0, int D=0)
Definition Vector.h:719
T & element2(void)
Definition Vector.h:731
void init(double C=1.0)
Definition Vector.h:726
T & element1(void)
Definition Vector.h:730
double c
信頼度
Definition Vector.h:715
T & element4(void)
Definition Vector.h:733
int d
汎用
Definition Vector.h:716
T norm2(void)
Definition Vector.h:722
double norm(void)
Definition Vector.h:723
Vector4< T > normalize(void)
Definition Vector.h:740
virtual ~Vector4(void)
Definition Vector.h:720
T & element(int i)
Definition Vector.h:734
double n
ノルム
Definition Vector.h:714
void set(T X, T Y=0, T Z=0, T U=0, double N=0.0, double C=1.0, int D=0)
Definition Vector.h:764
T & element3(void)
Definition Vector.h:732
T & element2(void)
Definition Vector.h:79
void init(double C=1.0)
Definition Vector.h:74
T & element1(void)
Definition Vector.h:78
double c
信頼度
Definition Vector.h:63
Vector< T > normalize(void)
Definition Vector.h:87
int d
汎用
Definition Vector.h:64
T norm2(void)
Definition Vector.h:70
double norm(void)
Definition Vector.h:71
void set(T X, T Y=0, T Z=0, double N=0.0, double C=1.0, int D=0)
Definition Vector.h:110
virtual ~Vector(void)
Definition Vector.h:68
T & element(int i)
Definition Vector.h:81
double n
ノルム
Definition Vector.h:62
T & element3(void)
Definition Vector.h:80
Vector(T X=0, T Y=0, T Z=0, double N=0.0, double C=1.0, int D=0)
Definition Vector.h:67
#define Min(x, y)
Definition common.h:250
#define Max(x, y)
Definition common.h:247
#define PI
Definition common.h:182
#define DllExport
Definition common.h:105
Definition Brep.h:29
Vector< T > operator-=(Vector< T > &a, const Vector< T > b)
Definition Vector.h:187
bool disJunctBounds(RBound< T > b1, RBound< T > b2)
Definition Vector.h:580
AffineTrans< T > operator*(AffineTrans< T > a, AffineTrans< T > b)
Vector4< T > * dupVector4(Vector4< T > *a, int n)
Definition Vector.h:902
Matrix< T > operator+(const Matrix< T > a, const Matrix< T > b)
Definition Matrix++.h:386
double Vector4Dist(const Vector4< T > a, const Vector4< T > b)
点a と b の距離 (a,b は位置ベクトル)
Definition Vector.h:865
double Zero_Eps
1に対して 0とするトレランス
Definition Tolerance.cpp:26
Vector< T > BSplineInterp4(Vector< T > p0, Vector< T > p1, double t)
Definition Vector.h:334
Matrix< T > operator/(const Matrix< T > a, const R d)
Definition Matrix++.h:427
double Vector_Tolerance
Definition Tolerance.cpp:14
bool operator==(const Matrix< T > v1, const Matrix< T > v2)
Definition Matrix++.h:435
bool operator!=(const Quaternion< T > q1, const Quaternion< T > q2)
~ 共役
Definition Rotation.h:109
TVector< T > operator^(const TVector< T > a, const TVector< T > b)
Cross product 外積
Definition TVector.h:164
Vector< T > operator+=(Vector< T > &a, const Vector< T > b)
Definition Vector.h:179
double VectorDist(const Vector< T > a, const Vector< T > b)
点a と b の距離 (a,b は位置ベクトル)
Definition Vector.h:219
Vector< T > MidPoint(const Vector< T > a, const Vector< T > b)
Definition Vector.h:213
bool operator<(const Vector< T > v1, const Vector< T > v2)
Definition Vector.h:225
double Vector4Angle(Vector4< T > a, Vector4< T > b)
Definition Vector.h:914
double VectorAngle(Vector< T > a, Vector< T > b)
Definition Vector.h:266
Vector< T > NewellMethod4(Vector< T > v1, Vector< T > v2, Vector< T > v3, Vector< T > v4)
Definition Vector.h:309
Vector< T > NewellMethod(Vector< T > v1, Vector< T > v2, Vector< T > v3)
Normal Vector of 3 Vectors with Newell Mothod.
Definition Vector.h:288
Matrix< T > operator-(const Matrix< T > a)
Definition Matrix++.h:378
Vector< T > * dupVector(Vector< T > *a, int n)
Definition Vector.h:254
Vector< T > NewellMethod3(Vector< T > v1, Vector< T > v2, Vector< T > v3)
Definition Vector.h:303
bool same_vector(Vector< T > v1, Vector< T > v2)
Definition Vector.h:241
Vector< T > Cast(Vector< R > v)
Definition Vector.h:126
ツールライブラリ ヘッダ for C++