JunkBox_Lib++ (for Windows) 1.10.1
Loading...
Searching...
No Matches
Quaternion< T > Class Template Reference

#include <Rotation.h>

Public Member Functions

 Quaternion (void)
 
 Quaternion (T S, T X, T Y, T Z, T N=(T) 0.0, T C=(T) 1.0)
 
 Quaternion (T S, Vector< T > v)
 
virtual ~Quaternion (void)
 
norm (void)
 
void normalize (void)
 
void set (T S, T X, T Y, T Z, T N=(T) 0.0, T C=(T) 1.0)
 
void init (T C=(T) 1.0)
 
Vector< T > getVector ()
 
getScalar ()
 
getAngle ()
 0〜2π
 
getMathAngle ()
 -π〜π
 
Matrix< T > getRotMatrix ()
 
void setRotation (T e, Vector< T > v)
 
void setRotation (T e, T X, T Y, T Z, T N=(T) 0.0)
 
void setRotate (T e, Vector< T > v)
 
void setRotate (T e, T X, T Y, T Z, T N=(T) 0.0)
 
void setExtEulerXYZ (Vector< T > e)
 X->Y->Z.
 
void setExtEulerZYX (Vector< T > e)
 Z->Y->X.
 
void setExtEulerXZY (Vector< T > e)
 X->Z->Y.
 
void setExtEulerYZX (Vector< T > e)
 Y->Z->X.
 
void setExtEulerYXZ (Vector< T > e)
 Y->X->Z.
 
void setExtEulerZXY (Vector< T > e)
 Z->X->Y.
 
Vector< T > getExtEulerXYZ (Vector< T > *vt=NULL)
 
Vector< T > getExtEulerZYX (Vector< T > *vt=NULL)
 
Vector< T > getExtEulerXZY (Vector< T > *vt=NULL)
 
Vector< T > getExtEulerYZX (Vector< T > *vt=NULL)
 
Vector< T > getExtEulerYXZ (Vector< T > *vt=NULL)
 
Vector< T > getExtEulerZXY (Vector< T > *vt=NULL)
 
Vector< T > execRotation (Vector< T > v)
 Exec Rotation qv(~q)
 
Vector< T > execInvRotation (Vector< T > v)
 Exec Inv Rotation (~q)vq.
 
Vector< T > execRotate (Vector< T > v)
 
Vector< T > execInvRotate (Vector< T > v)
 

Public Attributes

s
 cos(θ/2)
 
x
 x 成分
 
y
 y 成分
 
z
 z 成分
 
n
 ノルム
 
c
 信頼度
 

Detailed Description

template<typename T = double>
class jbxl::Quaternion< T >

class DllExport Quaternion

クォータニオンの定義

回転の合成:A*B => Bの回転 -> Aの回転

Definition at line 43 of file Rotation.h.

Constructor & Destructor Documentation

◆ Quaternion() [1/3]

template<typename T = double>
Quaternion ( void )
inline

Definition at line 55 of file Rotation.h.

55{ init();}
void init(T C=(T) 1.0)
Definition Rotation.h:64

◆ Quaternion() [2/3]

template<typename T = double>
Quaternion ( T S,
T X,
T Y,
T Z,
T N = (T)0.0,
T C = (T)1.0 )
inline

Definition at line 56 of file Rotation.h.

56{ set(S, X, Y, Z, N, C);}
void set(T S, T X, T Y, T Z, T N=(T) 0.0, T C=(T) 1.0)
Definition Rotation.h:273

◆ Quaternion() [3/3]

template<typename T = double>
Quaternion ( T S,
Vector< T > v )
inline

Definition at line 57 of file Rotation.h.

57{ setRotation(S, v);}
void setRotation(T e, Vector< T > v)
Definition Rotation.h:311

◆ ~Quaternion()

template<typename T = double>
virtual ~Quaternion ( void )
inlinevirtual

Definition at line 58 of file Rotation.h.

58{}

Member Function Documentation

◆ execInvRotate()

template<typename T = double>
Vector< T > execInvRotate ( Vector< T > v)
inline

Definition at line 97 of file Rotation.h.

97{ return execInvRotation(v);}
Vector< T > execInvRotation(Vector< T > v)
Exec Inv Rotation (~q)vq.
Definition Rotation.h:480

◆ execInvRotation()

template<typename T >
Vector< T > execInvRotation ( Vector< T > v)

Definition at line 480 of file Rotation.h.

481{
482 if (c<(T)0.0) return v;
483
484 Quaternion<T> inv = ~(*this);
485 Quaternion<T> qut = inv*(v*(*this));
486 Vector<T> vct = qut.getVector();
487 vct.d = v.d;
488
489 return vct;
490}
T c
信頼度
Definition Rotation.h:52

References Vector< T >::d, and Quaternion< T >::getVector().

Here is the call graph for this function:

◆ execRotate()

template<typename T = double>
Vector< T > execRotate ( Vector< T > v)
inline

Definition at line 96 of file Rotation.h.

96{ return execRotation(v);}
Vector< T > execRotation(Vector< T > v)
Exec Rotation qv(~q)
Definition Rotation.h:466

◆ execRotation()

template<typename T >
Vector< T > execRotation ( Vector< T > v)

Definition at line 466 of file Rotation.h.

467{
468 if (c<(T)0.0) return v;
469
470 Quaternion<T> inv = ~(*this);
471 Quaternion<T> qut = (*this)*(v*inv);
472 Vector<T> vct = qut.getVector();
473 vct.d = v.d;
474
475 return vct;
476}

References Vector< T >::d, and Quaternion< T >::getVector().

Referenced by ContourTriData::execRotate().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ getAngle()

template<typename T = double>
T getAngle ( )
inline

Definition at line 68 of file Rotation.h.

◆ getExtEulerXYZ()

template<typename T = double>
Vector< T > getExtEulerXYZ ( Vector< T > * vt = NULL)
inline

Definition at line 87 of file Rotation.h.

87{ return Quaternion2ExtEulerXYZ<T>(*this, vt);}

◆ getExtEulerXZY()

template<typename T = double>
Vector< T > getExtEulerXZY ( Vector< T > * vt = NULL)
inline

Definition at line 89 of file Rotation.h.

89{ return Quaternion2ExtEulerXZY<T>(*this, vt);}

◆ getExtEulerYXZ()

template<typename T = double>
Vector< T > getExtEulerYXZ ( Vector< T > * vt = NULL)
inline

Definition at line 91 of file Rotation.h.

91{ return Quaternion2ExtEulerYXZ<T>(*this, vt);}

◆ getExtEulerYZX()

template<typename T = double>
Vector< T > getExtEulerYZX ( Vector< T > * vt = NULL)
inline

Definition at line 90 of file Rotation.h.

90{ return Quaternion2ExtEulerYZX<T>(*this, vt);}

◆ getExtEulerZXY()

template<typename T = double>
Vector< T > getExtEulerZXY ( Vector< T > * vt = NULL)
inline

Definition at line 92 of file Rotation.h.

92{ return Quaternion2ExtEulerZXY<T>(*this, vt);}

◆ getExtEulerZYX()

template<typename T = double>
Vector< T > getExtEulerZYX ( Vector< T > * vt = NULL)
inline

Definition at line 88 of file Rotation.h.

88{ return Quaternion2ExtEulerZYX<T>(*this, vt);}

◆ getMathAngle()

template<typename T = double>
T getMathAngle ( )
inline

Definition at line 69 of file Rotation.h.

References PI, and PI2.

Referenced by jbxl::SlerpQuaternion().

Here is the caller graph for this function:

◆ getRotMatrix()

template<typename T >
Matrix< T > getRotMatrix ( )

ベクトルを回転させる場合の回転行列を求める. 座標軸の回転の場合は共役クォータニオンで計算する.

Definition at line 445 of file Rotation.h.

446{
447 Matrix<T> mtx(2, 3, 3); // 2次元マトリックス, 3x3
448
449 if (n!=(T)1.0) normalize();
450
451 mtx.element(1, 1) = (T)1.0 - (T)2.0*y*y - (T)2.0*z*z;
452 mtx.element(1, 2) = (T)2.0*x*y - (T)2.0*s*z;
453 mtx.element(1, 3) = (T)2.0*x*z + (T)2.0*s*y;
454 mtx.element(2, 1) = (T)2.0*x*y + (T)2.0*s*z;
455 mtx.element(2, 2) = (T)1.0 - (T)2.0*x*x - (T)2.0*z*z;
456 mtx.element(2, 3) = (T)2.0*y*z - (T)2.0*s*x;
457 mtx.element(3, 1) = (T)2.0*x*z - (T)2.0*s*y;
458 mtx.element(3, 2) = (T)2.0*y*z + (T)2.0*s*x;
459 mtx.element(3, 3) = (T)1.0 - (T)2.0*x*x - (T)2.0*y*y;
460
461 return mtx;
462}
T y
y 成分
Definition Rotation.h:48
void normalize(void)
Definition Rotation.h:288
T x
x 成分
Definition Rotation.h:47
T z
z 成分
Definition Rotation.h:49
T n
ノルム
Definition Rotation.h:51
T s
cos(θ/2)
Definition Rotation.h:46

References Matrix< T >::element().

Referenced by jbxl::Quaternion2ExtEulerXYZ(), jbxl::Quaternion2ExtEulerXZY(), jbxl::Quaternion2ExtEulerYXZ(), jbxl::Quaternion2ExtEulerYZX(), jbxl::Quaternion2ExtEulerZXY(), and jbxl::Quaternion2ExtEulerZYX().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ getScalar()

template<typename T = double>
T getScalar ( )
inline

Definition at line 67 of file Rotation.h.

67{ return s;}

◆ getVector()

template<typename T = double>
Vector< T > getVector ( )
inline

Definition at line 66 of file Rotation.h.

66{ Vector<T> v(x, y, z, (T)0.0, c); return v;}

Referenced by Quaternion< T >::execInvRotation(), Quaternion< T >::execRotation(), and jbxl::SlerpQuaternion().

Here is the caller graph for this function:

◆ init()

template<typename T = double>
void init ( T C = (T)1.0)
inline

Definition at line 64 of file Rotation.h.

64{ s=n=(T)1.0; x=y=z=(T)0.0; c=C;}

Referenced by AffineTrans< T >::initRotation(), jbxl::operator*(), jbxl::operator*(), and jbxl::operator*().

Here is the caller graph for this function:

◆ norm()

template<typename T = double>
T norm ( void )
inline

Definition at line 60 of file Rotation.h.

60{ n = (T)sqrt(s*s+x*x+y*y+z*z); return n;}

◆ normalize()

template<typename T >
void normalize ( void )

Definition at line 288 of file Rotation.h.

289{
290 T nrm = (T)sqrt(s*s + x*x + y*y + z*z);
291
292 if (nrm>=Zero_Eps) {
293 s = s/nrm;
294 x = x/nrm;
295 y = y/nrm;
296 z = z/nrm;
297 n = (T)1.0;
298 }
299 else {
300 init();
301 }
302}
double Zero_Eps
1に対して 0とするトレランス
Definition Tolerance.cpp:26

References jbxl::Zero_Eps.

Referenced by jbxl::SlerpQuaternion().

Here is the caller graph for this function:

◆ set()

template<typename T >
void set ( T S,
T X,
T Y,
T Z,
T N = (T)0.0,
T C = (T)1.0 )

Definition at line 273 of file Rotation.h.

274{
275 s = S;
276 x = X;
277 y = Y;
278 z = Z;
279 n = N;
280 c = C;
281
282 if (n<=0.0) {
283 n = (T)sqrt(s*s + x*x + y*y + z*z);
284 }
285}

Referenced by CBVHTool::getQuaternion(), jbxl::operator*(), jbxl::operator*(), jbxl::operator*(), AffineTrans< T >::setRotation(), and jbxl::V2VQuaternion().

Here is the caller graph for this function:

◆ setExtEulerXYZ()

template<typename T >
void setExtEulerXYZ ( Vector< T > e)

Definition at line 356 of file Rotation.h.

357{
358 Vector<T> ex((T)1.0, (T)0.0, (T)0.0, (T)1.0);
359 Vector<T> ey((T)0.0, (T)1.0, (T)0.0, (T)1.0);
360 Vector<T> ez((T)0.0, (T)0.0, (T)1.0, (T)1.0);
361
362 Quaternion<T> qx, qy, qz;
363 qx.setRotation(e.element1(), ex);
364 qy.setRotation(e.element2(), ey);
365 qz.setRotation(e.element3(), ez);
366
367 (*this) = qz*qy*qx;
368 if (s<(T)0.0) (*this) = - (*this);
369}

References Vector< T >::element1(), Vector< T >::element2(), Vector< T >::element3(), and Quaternion< T >::setRotation().

Referenced by jbxl::ExtEulerXYZ2Quaternion(), and jbxl::RotMatrix2Quaternion().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ setExtEulerXZY()

template<typename T >
void setExtEulerXZY ( Vector< T > e)

Definition at line 390 of file Rotation.h.

391{
392 Vector<T> ex((T)1.0, (T)0.0, (T)0.0, (T)1.0);
393 Vector<T> ey((T)0.0, (T)1.0, (T)0.0, (T)1.0);
394 Vector<T> ez((T)0.0, (T)0.0, (T)1.0, (T)1.0);
395
396 Quaternion<T> qx, qy, qz;
397 qx.setRotation(e.element1(), ex);
398 qz.setRotation(e.element2(), ez);
399 qy.setRotation(e.element3(), ey);
400
401 (*this) = qy*qz*qx;
402 if (s<(T)0.0) (*this) = - (*this);
403}

References Vector< T >::element1(), Vector< T >::element2(), Vector< T >::element3(), and Quaternion< T >::setRotation().

Referenced by jbxl::ExtEulerXZY2Quaternion().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ setExtEulerYXZ()

template<typename T >
void setExtEulerYXZ ( Vector< T > e)

Definition at line 407 of file Rotation.h.

408{
409 Vector<T> ex((T)1.0, (T)0.0, (T)0.0, (T)1.0);
410 Vector<T> ey((T)0.0, (T)1.0, (T)0.0, (T)1.0);
411 Vector<T> ez((T)0.0, (T)0.0, (T)1.0, (T)1.0);
412
413 Quaternion<T> qx, qy, qz;
414 qy.setRotation(e.element1(), ey);
415 qx.setRotation(e.element2(), ex);
416 qz.setRotation(e.element3(), ez);
417
418 (*this) = qz*qx*qy;
419 if (s<(T)0.0) (*this) = - (*this);
420}

References Vector< T >::element1(), Vector< T >::element2(), Vector< T >::element3(), and Quaternion< T >::setRotation().

Referenced by jbxl::ExtEulerYXZ2Quaternion().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ setExtEulerYZX()

template<typename T >
void setExtEulerYZX ( Vector< T > e)

template <typename T> void Quaternion<T>::setExtEulerYZX(Vector<T> e)

Y->Z->X の順にオイラー角でベクトルを回転させる場合のクオータニオンを計算する.

Parameters
eオイラー角の成分.作用させる順番に格納する. この場合, e.xはY軸回転,e.yはZ軸回転,e.z はX軸回転のそれぞれの回転角(ラジアン)を格納する.

Definition at line 339 of file Rotation.h.

340{
341 Vector<T> ex((T)1.0, (T)0.0, (T)0.0, (T)1.0);
342 Vector<T> ey((T)0.0, (T)1.0, (T)0.0, (T)1.0);
343 Vector<T> ez((T)0.0, (T)0.0, (T)1.0, (T)1.0);
344
345 Quaternion<T> qx, qy, qz;
346 qy.setRotation(e.element1(), ey);
347 qz.setRotation(e.element2(), ez);
348 qx.setRotation(e.element3(), ex);
349
350 (*this) = qx*qz*qy;
351 if (s<(T)0.0) (*this) = - (*this);
352}

References Vector< T >::element1(), Vector< T >::element2(), Vector< T >::element3(), and Quaternion< T >::setRotation().

Referenced by jbxl::ExtEulerYZX2Quaternion().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ setExtEulerZXY()

template<typename T >
void setExtEulerZXY ( Vector< T > e)

Definition at line 424 of file Rotation.h.

425{
426 Vector<T> ex((T)1.0, (T)0.0, (T)0.0, (T)1.0);
427 Vector<T> ey((T)0.0, (T)1.0, (T)0.0, (T)1.0);
428 Vector<T> ez((T)0.0, (T)0.0, (T)1.0, (T)1.0);
429
430 Quaternion<T> qx, qy, qz;
431 qz.setRotation(e.element1(), ez);
432 qx.setRotation(e.element2(), ex);
433 qy.setRotation(e.element3(), ey);
434
435 (*this) = qy*qx*qz;
436 if (s<(T)0.0) (*this) = - (*this);
437}

References Vector< T >::element1(), Vector< T >::element2(), Vector< T >::element3(), and Quaternion< T >::setRotation().

Referenced by jbxl::ExtEulerZXY2Quaternion().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ setExtEulerZYX()

template<typename T >
void setExtEulerZYX ( Vector< T > e)

Definition at line 373 of file Rotation.h.

374{
375 Vector<T> ex((T)1.0, (T)0.0, (T)0.0, (T)1.0);
376 Vector<T> ey((T)0.0, (T)1.0, (T)0.0, (T)1.0);
377 Vector<T> ez((T)0.0, (T)0.0, (T)1.0, (T)1.0);
378
379 Quaternion<T> qx, qy, qz;
380 qz.setRotation(e.element1(), ez);
381 qy.setRotation(e.element2(), ey);
382 qx.setRotation(e.element3(), ex);
383
384 (*this) = qx*qy*qz;
385 if (s<(T)0.0) (*this) = - (*this);
386}

References Vector< T >::element1(), Vector< T >::element2(), Vector< T >::element3(), and Quaternion< T >::setRotation().

Referenced by jbxl::ExtEulerZYX2Quaternion().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ setRotate() [1/2]

template<typename T = double>
void setRotate ( T e,
T X,
T Y,
T Z,
T N = (T)0.0 )
inline

Definition at line 77 of file Rotation.h.

77{ Vector<T> v(X, Y, Z, N); setRotation(e, v);}

◆ setRotate() [2/2]

template<typename T = double>
void setRotate ( T e,
Vector< T > v )
inline

Definition at line 76 of file Rotation.h.

76{ setRotation(e, v);}

◆ setRotation() [1/2]

template<typename T = double>
void setRotation ( T e,
T X,
T Y,
T Z,
T N = (T)0.0 )
inline

Definition at line 74 of file Rotation.h.

74{ Vector<T> v(X, Y, Z, N); setRotation(e, v);}

References Quaternion< T >::setRotation().

Referenced by Quaternion< T >::setRotation().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ setRotation() [2/2]

template<typename T >
void setRotation ( T e,
Vector< T > v )

回転を定義する

Parameters
e回転角.ラジアン単位.
v回転軸

Definition at line 311 of file Rotation.h.

312{
313 if (v.n!=(T)1.0) v.normalize();
314
315 if (e>(T)PI) e = e - (T)PI2;
316 else if (e<-(T)PI) e = (T)PI2 + e;
317
318 T s2 = e/(T)2.0;
319 T sn =(T) sin(s2);
320 s = (T)cos(s2);
321 x = v.x*sn;
322 y = v.y*sn;
323 z = v.z*sn;
324 n = (T)v.n;
325 c = (T)1.0;
326}
#define PI2
Definition common.h:184
#define PI
Definition common.h:182

References Vector< T >::n, Vector< T >::normalize(), PI, PI2, Vector< T >::x, Vector< T >::y, and Vector< T >::z.

Referenced by CBVHTool::getQuaternion(), Quaternion< T >::setExtEulerXYZ(), Quaternion< T >::setExtEulerXZY(), Quaternion< T >::setExtEulerYXZ(), Quaternion< T >::setExtEulerYZX(), Quaternion< T >::setExtEulerZXY(), Quaternion< T >::setExtEulerZYX(), jbxl::SlerpQuaternion(), and jbxl::V2VQuaternion().

Here is the call graph for this function:
Here is the caller graph for this function:

Member Data Documentation

◆ c

◆ n

template<typename T = double>
T n

◆ s

◆ x

◆ y

◆ z


The documentation for this class was generated from the following file: